Francisella tularensis - Tularémie

Collégiale des enseignants de bactériologie-virologie-hygiène

2014
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Généralités</td>
<td>3</td>
</tr>
<tr>
<td>2. Caractères de la bactérie</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Morphologie</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Caractères culturaux</td>
<td>4</td>
</tr>
<tr>
<td>2.3. Caractères d'identification</td>
<td>4</td>
</tr>
<tr>
<td>3. Habitat - Epidémiologie</td>
<td>4</td>
</tr>
<tr>
<td>4. Transmission</td>
<td>5</td>
</tr>
<tr>
<td>4.1. Transmission directe (Figure 5)</td>
<td>5</td>
</tr>
<tr>
<td>4.2. Transmission indirecte</td>
<td>5</td>
</tr>
<tr>
<td>5. Physiopathologie</td>
<td>5</td>
</tr>
<tr>
<td>6. Pouvoir pathogène naturel</td>
<td>6</td>
</tr>
<tr>
<td>6.1. Incubation</td>
<td>6</td>
</tr>
<tr>
<td>6.2. Invasion</td>
<td>7</td>
</tr>
<tr>
<td>6.3. Formes principales (Figures 8-10)</td>
<td>7</td>
</tr>
<tr>
<td>7. Diagnostic de laboratoire</td>
<td>8</td>
</tr>
<tr>
<td>7.1. Prélèvements</td>
<td>8</td>
</tr>
<tr>
<td>7.2. Culture</td>
<td>8</td>
</tr>
<tr>
<td>7.3. Techniques moléculaires</td>
<td>9</td>
</tr>
<tr>
<td>7.4. Sérologie</td>
<td>9</td>
</tr>
<tr>
<td>7.5. Interprétation des résultats</td>
<td>9</td>
</tr>
<tr>
<td>8. Activité des antibiotiques - vaccin</td>
<td>9</td>
</tr>
<tr>
<td>8.1. Antibiotiques</td>
<td>9</td>
</tr>
<tr>
<td>8.2. Vaccin</td>
<td>9</td>
</tr>
<tr>
<td>8.3. Prophylaxie</td>
<td>9</td>
</tr>
<tr>
<td>8.3.1. Chez l’homme</td>
<td>9</td>
</tr>
<tr>
<td>8.3.2. Chez l’animal</td>
<td>10</td>
</tr>
<tr>
<td>Annexes</td>
<td>10</td>
</tr>
</tbody>
</table>
1. Généralités

La tularémie est aussi appelée maladie de Francis, fièvre de la mouche du daim, maladie de Ohara, Yato-Byo, fièvre de la vallée de Pahvant. C’est une zoonose, mal connue, qui peut être grave.

Cette maladie et son agent Francisella tularensis ont été étudiés de 1911 à 1924 par Mac Coy, Chapin, Lamb, Francis, Parker et Spencer en Californie dans le comté de Tulare. Ils ont montré que l’affection qui sévissait chez les écureuils et les lapins sous la dénomination de «pseudo-pestes des rongeurs» ou encore le daim était la même qui sévissait chez l’homme sous des dénominations diverses «fièvre de la mouche du cerf ou deer fly fever», que son agent était identique et que certains vecteurs pouvaient jouer un rôle dans la transmission de la maladie.

Cette maladie sévit dans diverses régions du monde, plus particulièrement dans l’hémisphère Nord (Figure 1). En France, elle a été découverte en 1946, mais est suspectée depuis 1932. Elle existe, le plus souvent, sous forme de cas sporadiques aussi bien chez l’homme que l’animal, mais des cas groupés peuvent se manifester (Figure 2).

C’est une maladie contagieuse et inoculable.

Trois caractères sont importants :

- Importance cynégétique (réseau de surveillance SAGIR)
- Importance hygiénique (zoo-anthroponose)
- Bioterroriste éventuel

Famille des Francisellaceae, 2 espèces : F. tularensis, F. philomiragia.
F. tularensis : 4 sous-espèces : tularensis, holarctica (3 biogroupes), mediasiatica, novicida.
F. tularensis subsp holarctica est la seule espèce/sous-espèce présente en France.
Bactérie de classe 3 sauf F. tularensis subsp holarctica (classe 2).

Figure 1 : Zoonose de l’hémisphère Nord

Figure 2 : Incidence des cas de tularémie déclarés par région de France de 2002- à 2012
2. Caractères de la bactérie

2.1. Morphologie

Cocco-bacille à Gram négatif, non sporulé (Figure 3)

Immobile, aérobie strict

Figure 3 : Cocco-bacille à Gram négatif, non sporulé

2.2. Caractères culturaux

Milieu de Francis (*riche en cystéine*).

milieu pour *Legionella* : BCYE-a *sans antibiotique*, gélose chocolat enrichie.

Croissance sur gélose au sang cuit polyvitaminée en 2-4 jours (incubation pendant au moins 10 J) à 37°C sous 5% de CO₂.

Aspect des colonies :
- *aspect nacré, glaireux* (Figure 4)
- absence d’hémolyse

Figure 4 : Aspect des colonies

2.3. Caractères d’identification

Caractères positifs :
- catalase positive faible
- acidification faible des sucres, sans gaz

Caractères négatifs :
- oxydase
- nitrate réductase
- H₂S
- uréase
- indole
- gélatinase

3. Habitat - Epidémiologie

Zoonose de l’hémisphère Nord (Figure 1).
En France : Alsace, Franche-Comté, Lorraine, Champagne, Bourgogne, Rhône-Alpes, Massif Central, Gers, pays de Loire (Figure 2).

Isolée chez de nombreuses espèces animales domestiques ou sauvages : mammifères, oiseaux, poissons, amphibiens, reptiles, arthropodes.

Les réservoirs de germes sont : rongeurs, lagomorphes, tiques.

Evolution de la maladie chez les animaux sous forme d’une bactériémie massive (présence dans le sang, les excréptions et sécrétions animales.

Résistance plus importante à 0°C plutôt qu’à 10°C. 9mois dans les boues, eaux, paille, grains.

Survie de quelques jours sur les cadavres au-dessus de 5°C.

Population touchée : gardes-chasses, forestiers, chasseurs, agriculteurs.

4. Transmission

4.1. Transmission directe (Figure 5)

- voie cutanée ou muqueuse à travers la peau saine par manipulation des cadavres ou animaux.
- voie respiratoire sous forme d’aérosols lors des autopsies, poussières de fourrage, litière, par exemple.
- voie digestive par ingestion de viande crue ou mal cuite. Due à la forme pharyngée ou angineuses car la bactérie est détruite par 10 min à 55-60°C.
- ingestion d’eau contaminée.

Figure 5 : Nombre de cas sporadiques et non-sporadiques de tularémie déclarés en France de 2002 à 2012

4.2. Transmission indirecte

Morsure ou piqure d’arthropodes hématophages (moustiques en Suède, tiques).
Morsure ou griffures de chat.
Le cycle d’entretien est fondé sur la population des micro-mammifères en association avec les arthropodes.

5. Physiopathologie

Après pénétration (cutanée, la plus courante, ou d’une muqueuse), la bactérie se multiplie localement et gagne les ganglions lymphatiques locaux pour passer finalement dans le sang. Après phagocytose par les macrophages, \textit{F. tularensis} inhibe la fusion phagosomes-lysosomes mais une acidification des phagosomes est indispensable à la multiplication bactérienne (Figure 6).
Elle se multiplie ensuite dans le foie (multiple abcès visibles à l’œil nu) et la rate (splénomégalie marquée) (cf image ci-dessus). La réponse immunitaire, principalement à médiation cellulaire, est responsable de la formation de granulomes (cf ci-dessous). Son nouveau passage dans le sang provoque une septicémie, souvent mortelle chez l'animal.

Les facteurs de pathogénicité (Figure 7) commencent à être mieux connus avec la mise en évidence de l'excrétion de la phosphatase acide qui inhibe rendement ("burst") oxydatif des polynucléaires comme déjà rapporté pour deux autres pathogènes intracellulaires: Leishmania et Legionella. Elle possède aussi un LPS apparemment commun à toutes les souches dont l'activité endotoxinique est faible. Le LPS n'induit pas la synthèse d'IL-1 par les cellules mononucléées et provoque la synthèse de faibles quantités de TNF par les macrophages. Le LPS semble nécessaire pour la croissance intra-macrophagique. La capsule joue un rôle dans la virulence, les souches non capsulées étant peu pathogènes. Enfin, celle-ci n’est pas indispensable à la survie dans les phagocytes mais joue un rôle essentiel pour la résistance au pouvoir bactéricide du sérum.

6. Pouvoir pathogène naturel

Entraîne des signes cliniques pour un très faible inoculum : 10 bactéries.

6.1. Incubation

2 à 10 jours.
6.2. Invasion

Associe hyperthermie + frissons + myalgies + malaise général + asthénie.

6.3. Formes principales (Figures 8-10)

- **forme ulcéro-glandulaire** : la plus fréquente (75-85% cas). Après inoculation par voie cutanée (mains et ganglions axillaires). Réapparition de la lésion primaire lors de l’apparition de l’adénopathie (signe pathognomonique).
- **forme ganglionnaire** sans lésion cuanée (5-10% cas).
- **forme typhoïde** : (5-10% cas) : fièvre nue ou faisant suite à une des autres formes. Forme septiciémique. Evolution courte et sévère
- **forme oculaire** (1-2% cas) *syndrome oculo-glandulaire de Parinaud* : conjonctivite unilatérale et adénopathie.
- **forme angineuse** ou pharyngo-glandulaire après ingestion : amygdalite résistante aux b-lactamines et gg lymphatiques régionaux
- autres formes : pneumonie apparaissant pour un inoculum très faible (environ 10-20 bactéries), méningée.

![Figure 8 : Formes principales](image1)

![Figure 9 : Formes principales](image2)

![Figure 10 : Distribution des formes cliniques parmi les cas de tularémie déclarés en France de 2002 à 2012](image3)

Traiter le plus précocement possible, avant l’apparition des adénopathies (Figures11-12).

![Figure 11](image4)
Evolution subaiguë ou chronique
Mortalité : 1 à 6 % sans traitement.
C'est une maladie à déclaration obligatoire.
Les principales professions à risques sont les agriculteurs, les forestiers, les bouchers-cuisiniers (Figure 13)

Figure 13 : Les principales professions à risques

7. Diagnostic de laboratoire

7.1. Prélèvements

Prélèvements :
- sérosités à partir du site suspect d’inoculation.
- adénopathie (à faire précocement car négativation en moins de 10 jours).
- exsudats niveau conjonctival ou pharyngé, dont rinçage oro-pharyngé
- hémocultures

Ensemencement rapide ou mise à +4°C.
Ecouvillon avec milieu de transport de type Amies ou Cary-Blair (milieu au thioglycolate)
Prélèvement de sérums précoce et tardif.

7.2. Culture

Voir plus haut pour les milieux
Sensibilité < 25%

7.3. Techniques moléculaires

Plusieurs cibles pour PCR sont possibles :
• Gène codant pour l'ARN ribosomique 16S
• Gène d’une protéine de surface 23 kDa
• Gène *Fltul*4 codant une protéine de 17kDa
• Séquence d'insertion *ISFtu2*
• *Gène* *fopA* codant une b-fructofuranosidase

7.4. Sérologie

Recherche des anticorps par micro-agglutination en tube (la plus utilisée), immunofluorescence indirecte ou ELISA.
Apparition des anticorps après 2 semaines, maximum après 3-4 semaines.
En raison de la persistance de titres élevés d'IgG et parfois d'IgM, seule une séroconversion permet d'établir le diagnostic.

7.5. Interprétation des résultats

Faire faire la confirmation par le Centre National de Référence (URMITE 6236, Marseille).
Le CNR fait le typage de la souche.
La PCR permet un diagnostic précoce. Sa sensibilité est meilleure que la culture (> 75%).
En sérologie, le titre significatif est ≥ 160 mais un titre précoce de 40, voire de 20 peut être présomptif de la maladie.
Il existe des phénomènes de zone en sérologie, d'où faire des dilutions.
La sérologie ne permet pas d'identifier la sous-espèce.
Il existe des réactions croisées avec *Brucella, Proteus vulgaris* OX19 et *Y. enterocolitica* O9.

N.B. S'agissant d'une bactérie de classe 3, toutes les manipulations doivent être réalisées en laboratoire de confinement de classe 3.

8. Activité des antibiotiques - vaccin

8.1. Antibiotiques

Antibiotiques actifs : aminosides (streptomycine, gentamicine)
Antibiotiques actifs avec risque d’échec thérapeutiques : fluoroquinolones, tétracyclines, chloramphénicol.

Echecs thérapeutiques : b-lactamines (pénicillines et céphalosporines).
Synergie entre amoxicilline ou ticarcilline et acide clavulanique.
Résistance du biotype II de *F. tularensis* subsp. *holartica*.

8.2. Vaccin

Immunité essentiellement cellulaire.
Protection de plusieurs années après la maladie.
Vaccin avec la souche *F. tularensis* LVS vivante atténuée.

8.3. Prophylaxie

8.3.1. Chez l’homme

Après exposition : possibilité d'administrer une fluoroquinolone ou une tétracycline pendant 14 J.

Emploi d'insecticides.

Usage de vêtements de protection contre les arthropodes dans les zones d'enzootie.
Emploi de masques, de gants et de lunettes pour manipuler les dépouilles d'animaux sauvages.
Désinfecter le pelage à l'alcool à 70°C avant autopsie.
Ne pas boire d'eau non traitée en zone suspecte ou giboyeuse et bien cuire les viandes d'animaux sauvages en région d'enzootie.
Respecter les règles générales d'hygiène.

8.3.2. Chez l'animal

Prophylaxie sanitaire défensive: Agir sur le réservoir animal par le contrôle des densités de petits mammifères, lutter contre les arthropodes piqueurs, limitation des importations de lièvres d'Europe Centrale.

Protection des élevages: quarantaine de déparasitage des nouveaux animaux, antibioprévention (streptomycine, tétracyclines) lors d'infection déclarée dans un élevage d'ovins ou de primates.

Protection des locaux contre les rongeurs sauvages et séparation géographique, réelle, des espèces (pour éviter une contamination par des puces par exemple).

Prophylaxie sanitaire offensive: La tularémie n'est plus une maladie réputée légalement contagieuse depuis 1996 (MLC) chez toutes les espèces de rongeurs et de lagomorphes domestiques et sauvages. Leurs importations, morts ou vivants, ou celles de leur peau est soumise à contrôle. Ainsi des cas de tularémie ont été récemment observés en Belgique chez des chiens de prairie importés des USA.

Mesures de police sanitaire: Malheureusement, il n'y a plus actuellement obligation de déclarer tout rongeur ou lagomorphe vivant ou mort suspect de tularémie ainsi que toute mortalité élevée de lièvres ou lapins de garenne.

Pour les rongeurs et lagomorphes sauvages, une information est diffusée par l'ONC http://www.oncfs.gouv.fr/ et le réseau SAGIR.

Annexes

Bibliographie

- **REMIC.**: *Francisella tularensis*. Référentiel en microbiologie médicale de la Société Française de Microbiologie. 4ème édition. SFM éditeur.2010.